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THEORY AND APPLICATION OF THE WAVELET
TRANSFORM TO SIGNAL PROCESSING

1. INTRODUCTION

Most scientists and engineers are familar with the Fourier representation of a func-

tion. In most cases of practical interest, it is well known that a piecewise continuous

periodic function gT(t) can be equated almost everywhere with a weighted countably in-

finite sum of exponential functions, i.e.,
00

gT(t)- j g.e2T l/T, (1)
n= -00

where gn is the nth Fourier coefficient, and is given by

gn= 1 j T(t)e - , 2 -t / T t .  (2)

This is the classic Fourier series. The Fourier representation for a piecewise continuous

nonperiodic function g(t) has the integral formulation

g(t) = G~ffe j2wtd, (3)

where G(f) is the Fourier transform of g(t), and is given by

G(f) = f g(t) -32 f tdt. (4)

The development of Fourier theory constitutes a significant portion of classical matlemat-
ical analysis. It has also been a valuable tool in physics and engineering by contriLuting to

the solution of problems in linear system theory, thermodynamics, and quarL - m physics,

to name a few.

Despite their wide use, some problems arise in the interpretation of the classic Fourier
representations. For example, if g(t) is a function that is nonzero -)nly in an interval (it

has compact support), then the Fourier transform implies that this time-limited function

is a summation of complex exponential functions, each having support over the entire

real line. Furthermore, one cannot associate features of tbe time function g(t) with any

specific value, or range of values, of f of the transform G(f). In other words, the transform

exhibits no locality of time; a transient feature in g(t) contributes to G(f) at all values of

f.

Manuscript approved March 4, 1991.



DAVID M. DRUMHELLER

In light of these observations, researchers have sought alternatives to the Fourier
representations that display some sense of locality in time. It was recently discovered that

certain functions, those whose amplitude is significant over a finite interval, can serve as a
transform kernel for square summable functions, provided they obey a regularity condition
[1-5]. These functions are defined as a time-dilated and time-shifted version of a specified
function 0(t) called a wavelet. Thus, the transform kernel is ob(s(t - r)), where s E [0, oo),
and r C (-00, o0). If we integrate the function g(t) with respect to this kernel, the result
is the wavelet transforni q(s, r), which is analogous to the Fourier transform since it has
an integral representation for both the forward and inverse transform. There is also a
version of it analogous to the Fourier series in that it represents a function as a countable
sum of wavelets.

Many uses for the wavelet transform have been proposed [1]. Among them are
the identification and localization of transients in time series and the compact coding
of images if the concept of a wavelet is extended to two dimensions. In this report we
are concerned with the application of the wavelet transform in signal theory and signal

processing. The first part of the report presents several theorems, some of which are
results that have either been left unproven in other references or have only been alluded
to by other authors. Others are new, and present a deliberate attempt to reformulate
some standard signal theory in the context of the wavelet transform. The last part of the

report presents the application of the wavelet transform to two common signal processing
problems: filtering and deconvolution.

Throughout this report we maintain the following notational conventions: time sig-
nals are represented by lower case italic as in g(t), and their associated Fourier transforms
are always written with the same letter but in upper case italic as in G(f). Vectors are
written in bold lower case italic as in w, and matrices are written in bold upper case italic
as in A. Finally, it is assumed that the reader has some familiarity with real analysis.

2. THE WAVELET TRANSFORM

As the Fourier transform does, the wavelet transform also provides a representation
of the elements in the set of all square summable functions. This is the space P(R),
where R denotes the real line. The wavelet transform of the function g(t) is given by

W I{g(t)} 1 ~(5, -) = vs-f g(t)b*(s(t -r))dt,(5

where O(t) is referred to as the analyzing wavelet, s is the dilation variable, and r is the
delay variable. This defines a mapping from the one-dimensional (1-D) time domain, to
the two-dimensional (2-D) dilation/delay space defined by the (s,r) plane. The factor vs-
appears because

sf 17P '(s (t - 'r)) I'dt f 1,0(t)12 dt, (6)

2
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thereby acting as a normalization factor. This implies the relative amplitudes, or powers

(square magnitude), of the wavelet transform at two different points in the (s,r) plane

can be compared meaningfully.

Note in the mathematical literature that the time-dilated and time-shifted version

of the analyzing wavelet is defined as

1 ~t -) (7)

where a = 1/a, and a E [0, oo). We choose the definition by using s rather than a since

it is often interpreted as the time-dilation due to the Doppler effect caused by a moving
point reflector. That is, if a transmitter is stationary and a reflector is moving with a

positive radial velocity of v, then

1 - v/c - 2v (8)
1=l+ v/c l -' 8

where c is the propagation speed. Thus, if we transmit the signal g(t), then we receive

rsig(st). Adopting the convention of modeling time-dilation by the variable s will make
Ahe results presented in this report immediately applicable to those working in the field
of wideband echo-location systems.

Given the definition of a forward transform in Eq. (5), we naturally seek a formula
for transforming from the (s,7r) plane back to the time domain. If the wavelet's Fourier
transform I(f) meets a regularity condition, namely

= j. Iq(f)2 d< 00, (9)

and I'(f)I = I= (-f)l, then an inversion formula for the wavelet transform exists, and
g(t) can be recovered from 49 (s, r) through the formula

g(t) C- f f_ V5 Og(s,r) ((t - r))drds. (10)

For completeness, a proof of this result is given below since most published versions of it

can only be found in obscure references.

Proof of the Inversion Formula - We begin by substituting Eq. (5) into Eq. (10) to

get

1 - 10 oo  a g(y)(s(y - 1b(a(t - (11)
C-O = oo

However, it can be shown that the Fourier transform of O(s(t - r)) is given by

"{rf(s(t - r))}= f O(s(t -r))e- 2"1 t dt = (f/S)e- 27rf. (12)

3
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Therefore, by invoking Parseval's Theorem, using Eq. (12), and defining G(f) to be the

Fourier transform of g(t) (G(f) exits since g(t) c L2(R)), one finds that

1 0 a G(f)4 "(f/s)e2wf7.dfI e 2w (t-))d, drds

T.] jwfift-)dd dfds. (13)CO- C =O=0 =-00 s0 * sI

The bracketed factor in the integrand of the last line of Eq. (13) can be reduced as follows:

S 0  sik(s(t -

00 ib(z)e 32 w(f/as)zdz e 321rft
3 ))2wft~ d

Q ,(fls)ew,. (14)

Thus, substituting Eq. (14) into Eq. (13) yields

I- .JJ slG(f)Q(f/s) 2 e 2wf t dfdsI=C--- =0 =-00

1 L. G(f)[J s-1(f/s)lds e'"' tdf. (15)

Concerning the bracketed factor in the integrand of Eq. (15), if f : 0, then the change of
variable i = s/f yields

J1- 1(f/S) 2 ds I(77)1 " d77 = C,. (16)

Note that this is true regardless of the sign of f since IP(f)l = I'(-f)l by hypothesis.
We now consider the value of the bracketed factor as f -- 0. In this case

l s-' Il(f/s) 2 ds = lir lira s-1l(fis)I2 dsf-of -0 a-O+ 1 a

= tim lira 1 I *(z)'dz
f-0 [a- O+

= lim C,
f40

= CO (17)

This result can also be deduced by noting that for any if I > 0, however small, Eq. (16)
always holds. Hence, the value of the limit of the integral in Eq. (16) is C,. Regardless
of its value at f = 0, we at least know that

j0" I%(f/s)d -- C,= 6 for almost all f. (18)

4
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In light of Eq. (18), Eq. (15) reduces to

I J- G(f)e' 2  = t df"'=e'g(t), (19)

which proves the inversion formula in Eq. (10). This completes the proof.

3. PROPERTIES OF THE WAVELET TRANSFORM

We now state and prove three properties of the wavelet transform. The first property
concerns the wavelet transform of a time-dilated and time-shifted signal.

Theorem 1: Let 0g(s, 7-) be the wavelet transform of the function g(t). Then for
SO > 0,

{Yv J~-o(so(t - ro))}I = obg (s,.o(T-T).(0

Proof of Theorem 1: Equation (20) follows directly from the definition of the wavelet
transform by substituting y/g9(so(t - 7-)) for g(t) in the integrand of Eq. (5), and by
invoking the change of variable y = so(t - r). This completes the proof.

The theorem above shows how distortion in the time domain affects the wavelet
transform. For example, if So > 1, we see that the support of the wavelet transform in the
(s,ir) becomes wider in s and narrower in r. Delaying a function in time merely delays its
wavelet transform along the r axis.

As in the case of the Fourier transform, one is often concerned about how rapidly
the transform G(f) decays as If I -- , 0. This 'decay rate' is related to the continuity of
g(t). The following theorem describes tht decay rate of the wavelet transform 0g(s, r) at
points of continuity, and at points of a jump discontinuity for the function g(t), providing
g(t) is of bounded variation.

Theorem 2: Let g(t) E L2 (R) and i(t) E L'(R) fL 2(R). Suppose g(t) is of bounded
variation in a neighborhood of to, then the wavelet transform of 9(t) with respect to the
wavelet 0(t) has the property

(i) 4og(s,to) --+ 0 as s -- oo.

Furthermore, if for all iS> 0,

S1[ I¢p(z)12 dz -, 0 as s -- oc, (21)

then if g(t) has a finite jump discontinuity at to, then

(ii) Vrseg(s, to) -- g(to)O*_ + g(to)O+ as s -- cc,

5
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where

¢+= j2,bCt)dt,

?k- O (t)dt. (22)

If g(t) is continuous at to, then

(iii) Vsog(s,to) - 0 ass --+ o.

Proof of Theorem 2: We note that for any 6 > 0,

09(s,7 to) / fi m go(t)ik*(s(t - to))dt

- jt~to > + F lig(t)'O*(s(t to))dt

-I + 12. (23)

Consider I, and 12, one at a time.

We first show that I --+ 0 as s --+ 00. By the Schwartz inequality

0 _ (fIl2 < fgff[ sf4(s(t- to)) f2dt

= flglJ2  Ikp(z)I 2dz. (24)

But since 6 > 0,

lim [,(z)f2dz = lira7 1(z)I2dz = + (z) 2dz= 0+0 =0. (25)

(This could also have been proved by using the density of the step functions in L 2(R).)

Thus, by applying the squeeze theorem for limits to Eq. (24) one finds that

im Ji1,2 = 0 = tim /1 = 0. (26)
8 "- 008"-00

Furthermore, if Eq. (21) is true, then by a similar development

0 < jV I 2 _< Ilgl] f os (z)I 2 dz - 0 as s -+ oo, (27)

which proves

VsIi -40 as s --+ co. (28)

Now consider 12. It is sufficient to consider the case where g(t) and O(t) are real
valued. Because g(t) is of bounded variation in a neighborhood of to, say [to - 6, to + 6], we

6
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know g(t) is the difference of two increasing iurction (that are also of bounded variation).
Therefore, it is also sufficient to consider the case of g(t) increasing, and with a finite
jump discontinuity at to.

Using the second mean value theorem for integrals, we note that for some
qj E (to, t o + 6],

I to+6 
t o +

g(t)sVP(s(t - to))dt = + g(t)s.b(s(t - to))dt
to to ?7r

= g(t+) jsO((t - io))t

+g(to + 8) / i0+6 a(s(t - to))dt

= 9~~ 0 (7- o)b(z)dz + g(to + 8) f bO(z)dz

--4 9 (tO)7p~+ + g(to + 8)1 f O(z)dz

(t+),O+ as s -- 00, (29)

where we have used the definitions of ib_ and + given in Eq. (22). Similarly,

to
_6g(t)a4O(s(t - to))dt - g(to)V;- as a - oo. (30)

Together Eqs. (29) and (30) show that

Vsf12 --+ g(t;) _ + g(t+)O+ < oo as s --+ o. (31)

This, in turn, implies that
12 --+ 0 as s -+ oo. (32)

For if 12 -- K : 0 as s -+ oo, then x/sI2 --+ oo as s --+ oo, which contradicts Eq. (31).

Equations (26) and (32) prove property (i), and Eqs. (28) and (31) prove property
(ii). If g(t) is continuous at to, then g(to) = g(t+), and property (iii) follows immediately.
This completes the proof.

Poperties (ii) and (iii) imply that at t = to the wavelet transform falls off to 0
less rapidly along the a axis if g(t) has a jump discontinuity at to. In other words, any
discontinuous jump of the function g(t) at t = to implies the value of Og(s, to) is significant
for large values of s. In a practical sense, this means that the wavelet transform can be
used for transient detection, since any abrupt change or short term feature of the function
should cause Og(s, to) to be significant for large values of s. Also, because of the assumed
regularity of the wavelet, we know T(0) = 0, hence

= 41(0) =/ (t)dt = 0-_ + 0,+ = 0+ = -- 0-. (33)

7
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Farthermore, the condition 7P C L'(R) implies 0 + and V- are f nite since

I4r, 1 -I -J (t)Idt I 1 l1i < oo. (34)

Finally, almost any function encountered in practice modeling a physical phenomenon will
be a well bhaved, bounded, piece-wise continuous function. Thus, rcquiring q(t) to be of
bounded variation is not overly restrictive.

Theorem 3: Suppose g(t) and the wavelet 0(t) are members of L2(R), thenI .,(s,-r)l"  < II!! II~ I . (35) I

Proof of Theorem 3: Equation (35) follows directly from the applica+-rn of the
Schwartz inequality to Eq. (5):

ILV9s,r)1 = v1i-0i g(t)*(s(t T))dt2

< [J Ig(t)I2 dt] [s J (s(t -- -r )12dt]

- J Ig(t)12dt] [f 10(Z)12 dz]
= tgjll !!V)112 2 (36)

4. LINEAR SYSTEMS AND THE WAVELET TRANSFORM

In this section we state and prove three results of the wavelet transform as applied
to linear system theory.

Theorem 4: Let x(t) be the deterministic input to a linear system whose known

impulse response is g(t), and whose output is y(t) = x(t) * g(t), where * denotes the
convolution operator. Furthermore, let the wavelet transforms of x(t), g(t), and y(t) be
given by

YV { (t) - C(s,r) -v'f g(t),*(s(t - r))dt,

Y, y(t) 01 ¢ (3 r) -V's y(t)0*(s(t -r))dt. (37)

Then the wavelet transform of the output y(t) is related to the wavelet transforms of x(t)

and g(t) through the equation

,(,) I' x(z)¢%(s, z r)dz J g(z)0r,(8, z - -)dz. (38)

8



NRL REPORT 9316

Proof Theorem 4: First, it is well known from linear system theory that

y(t) f x(z)g(t - z)dz = x(t) * g(t). (39)
00

Substituting Eq. (39) into the definition of the wavelet transform of y(t), and invoking a

change of variable yields

W {Y(t)} O 4(S ,-r)

= vfS y(t)i/*(s(t - r))dt

- x(z)g(t -z)t*(s(t r))dtdz

j x(z) [Vs g(t z),'(s(t - r))dt dz

. X() P- f xwwt- (Tr -- z))dti dz

J x(z).g(s,r - z)dz, (40)

which proves the first integral in Eq. (38). The second integral in Eq. (38) is derived

similarly, but starts with the alternate form of the convolution integral

(t) J g(z)x(t - z)dz. (41)

This completes the proof.

It is well known from the theory of stochastic processes that the autocorrelation
function of a stationary process x(t) is related to its power spectral density S.(f) through
the Fourier transform relation

E{x(t)x*(t-- z)) = R,(z) J S.(f)e 2w'fzdf. (42)

This is known as the Weiner-Khinchine Theorem [6]. Furthermore, if x(t) is passed through
a linear time-invariant filter whose impulse response is g(t), then the power spectral density

of the output y(t) [6] is given by:

S.(f) = {g(t)1 S(f). (43)

The following theorem gives similar relationships for the wavelet transform.

Theorem 5: Let x(t) be a wide-sense stationary stochastic process whose autocorre-
lation function is defined by

R.(z) = Efx(t)x'(t z). (44)
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Then the wavelet transform of the autocorrelation function with respect to the wavelet

,O(t) is given by

)V {R.(z)} = ¢..(s,r) = v/f0 R..(z)-O*(s(z - r))dz, (45)

and the Fourier transform of 4.z(s, T) with respect to r is

F- {¢(s,7)} --- (s,f)- =1VI S (f), (46)

where T(f) is the Fourier transform of the wavelet ik(t), and Sa,(f) is the power spectral
density of x(t). Furthermore, let x(t) drive a linear time-invariant system whose impulse
response is g(t), and whose output is denoted by y(t). Then the Fourier transform of the
wavelet transform of the output autocorrelation function RyY(z) is given by

.(by(s,f) = JG(f)12,.. (S',f ). (47)

Proof of Theorem 5 (first method): We take the wavelet transform of the autocor-
relation function directly, and use the Fourier transform property (a transformation with

respect to the variable t)

s {v -i'(s(t - -r))} = ,*-/9 Z 3w- (48)

where s > 0. Thus,

W {R..(z)} Vs R.. R (z),O* (s (t - r)d

S 1/ 2 f i ( f/) [f : R,.(z)e32,-fzdz] e-.72 f-,df

= a-1/2 J V(_fs)S.(_f)e-2 f df

s-1/2 f0 x*(f/s)Sz.(f)ei 'Sdf (49)f(400

Therefore,
€(S',7) = _ Y- ./S) s:(. (50)

t vs-

This, in turn, implies that

$:(sf) _ 1'(y/s) s2 2 (), (51)

which proves Eq. (46).

10
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If we now consider the case of x(t) driving a linear system whose impulse response

is g(t), then from Eq. (43) the power spectral density of the output y(t) is

S (f) = IG(f)Is.(f). (52)

Thus, from Eq. (51) and (52) it follows that

'Ji(f/Ss()

- v IG(f)12S 2(f)

= IG(f)12

= I(f) 2 2(sf), (53)

which proves Eq. (47). This completes the proof.

Proof of Theorem 5 (second method): This approach uses the definition of the auto-

correlation as an expectation. Substituting Eq. (44) into Eq. (45), and using the change
of variable w = t - z yields

W {R..(z)} = v-fj E{2x(t)x(t - z)}IV;(s(z - T))dz

E EX(t)sAL x*(t - z)2k*(s(z - 7-))dz}

- ~(t) vs'L-" x(w),O(s ((t - 7-) - w)) dw]

- E{z(t)h*(t - 7)}, (54)

where we interpret h(t) to be the response to the input x(t) of a linear time-invariant

system whose impulse response is V"o(st). Thus, the last line in Eq. (54) is the cross-
correlation function R&h(r). The Fourier transform of this correlation function is the
cross-power spectral density function, and it is well known that

F {RJ h(T)} =S.h(f) (f/*(f/ s)s(f) (55)

where we have used the Fourier transform relation

l()} -I(fs (56)

We note, however, that Eq. (55) is also equal to the Fourier transform with respect to r

of the wavelet transform (,). Thus, we have proved Eq. (46). The proof of Eq. (47)

is identical to the approach used in the first method. This completes the proof.

11
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Let R(s, r) be a density function that describes the average amount of spread in

range delay T and Doppler variable s a signal undergoes when applied to a dispersive

channel. We call R(s, r) the channel scattering function [7,8]. Furthermore, if the input

signal to the channel is x(t), and its wavelet transform is

W {x(t)} = ¢=(s,r) = V/ x(t)O*(s(t - 'r))dt, (57)

then the expected square magnitude of the wavelet transform of the channel output y(t)

is given by

E{~~s~)I} j R(w, z)A..,(s/w, w(7 - z))dwdz, (58)

where A,(s, ir) is the wideband crossambiguity function defined by
Af-[ xr)O(~ ))dt 10

AX¢(s,r) = s 0(t)0b(a(t- -_ I(s,7)l1. (59)

Derivation: In a channel that spreads a signal in both time and Doppler, the output

is composed of time shifted and Doppler shifted replicas of the input signal. For a channel
composed of a finite number of scatterers, the output signal would be given by

N

y(t) = E pisi X(si(t - 7)), (60)

where pi is the random complex reflection coefficient of the ith scatterer. By Theorem

1, we know that the wavelet transform of an input signal dilated by an amount si and
delayed an amount r is given by

TYV {x(s,(t - rf))} = ¢:"(s/s,,si(t - 7,)). (61)

Thus, by linearity, the wavelet transform of output signal in Eq. (60) is

N

W {y(t)} = Oy(s, r) = Epi¢(s/sis(r - 'r)). (62)
i=1

If we assume that the expressions in Eqs. (60) and (62) are approximations for a channel

described by a continuous distribution of scatterers, then as N -4 oo, we have

O (S, r ) =j j S(z,u;)q(s/w, w(r- - z))dwdz, (63)

where S(s,r) is called the spreading function, and describes the distribution of the reflec-

tion coefficient in range delay r and Doppler variable s [7]. It is a stochastic function.

Furthermore, assume that the channel exhibits uncorrelated spreading, then

EfS(s, )S'( ,) fI= R(s, r)8(s - .)6(r - +), (64)

12
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where (.) denotes the Dirac delta function. We apply Eq. (64) to the correlation function
of the wavelet transform of the channel output as follows:

E{~(s r)~s, ~} = 2 {S w: iz)S*(i 1w0

(S/W'W(r - --- 0

dzZdwd.dz.

= OOJfWL=V
R(w, z)o 2 (s/w, w(r - z)).O/ (9/w, w(- - z))dwdz.

(65)

Setting 9 = a and + = r yields Eq. (58).

5. THE WAVELET EXPANSION AND DUABECHIES WAVELETS

The Lransform discussed in the previous sections shows that for a suitable choice of
O(t), any function in L2 (R) can be expressed as an integral sum of time-dilated and time-
delayed wavelets. Note that this is not an orthogonal representation, since, in general, we
do not have

J00/5_ (st- irl))i¢*(s2 (t - i-2))dt = 0, for a11 si # s2 and r1 $ T2 . (66)

Thus, the transformation is in some sense redundant. However, an orthogonal represen-
tation can be derived, provided the wavelet O(t) obeys some additional restrictions. The
result is an expansion composed of a countable sum of wavelets.

The description of this expansion was first given by Mallat [5]. In his work, he
presented the concept of a multiresolution approximation of any function g(t) e L2 (R).
This is a nested sequence of closed subspaces in L2 (R) denoted as {V },Ez, where Z is the
set of all integers for which the following are true:

(a) Vj C Vj+,, for all j E Z,

(b) UjEz Vj is dense in L 2 (R) and njEzV = 0,

(c) g(t) E V< <, g(2t) E Vj+I for all j E Z

(d) g(t) E Vj => g(t - 2-jk) E V for all j E Z

(e) Let 12(Z) denote the space of square summable infinite sequences, then there exists
an isomorphism T : Vo -+ 12(Z) which commutes with the action of Z.

13
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Properties (a) and (b) merely state that the nested sequence of subspaces must span

the space L2(R). Properties (c) and (d) describe the effects of time dilation and time

delay. Collectively, however, all the properties can be used to prove that there exists a

function 0(t) E L2(R) such that for any j E Z the subspace V is spanned by the set

f(vjO(2j(t- k))}kEZ • 0(t) is called the scaling function, and the properties stated above

imply that if we wish to approximate (in a minimum integral square error sense) the

function g(t) by a function gj(t) in the subspace Vj, then

00

gj(t) = gj3, -V'-Y(2j(t - 2-4)), (67)

where the coefficients of the expansion are given by

vi,k V f 0 0 g(t)O(2(t - 2--k))dt. (68)

This, of course, is reminiscent of a generalized Fourier expansion; however, the difference
here is that the expansion is only over the subspace Vj not the entire space L2 (R). Equation
(67) explains property (e) in that the sequence {gJ,k}k1EZ is an alternate representation of
g(t). Because the set {vi0(21 (t - k))}kEz is a basis, the elements are orthogonal. Thus,
by calculating I1g[[ one finds that it is equal to the sum of the squares of the sequence

Jgjk~kEZ. Since g(t) C L2(R), JigJJ2 is finite implying {1j,k}kZ e 12(R).

For practical applications, we need to know more than just the existence of the
scaling function; we need to know how it is parameterized, and how to compute it. A step
in this direction is the following theorem that is proved in Refs. 2 and 5.

Theorem 6: Let 0(t) be a scaling function, and H(f) be the Fourier series defined by

00

H(f) h(k)e -2 wk1 , (69)
k= -oo

where {h(k)}kEz is the sequence defined by

h(k) = f 0(2- 1 t)0"(t + k)dt. (70)h 2) oo

Then H(f) satisfies the following properties:

(i) g(0)l = 1,

(ii) h(k)- 0(k) as k --4 oo,

(iii) IH(f)12 - IH(f + 1/2)12 = 1.

Furthermore, let

IH(f) $0 for f E [0,1/2), (71)

14
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then th; Fourier transform of the scaling function is given by
00

0(f) 1 H(2 P f) (72)
p-1

The proof exploits properties (a) through (e), which define the multiresolution approxi-
mation. In particular, it uses properties (c) to say that the function 0(t/2)/2 is equal to a
weighted sum of the functions O(t + k), and the weights are the elements of the sequence
{h(k)}kJEz. Furthermore, any sequence used to define H(f) in Eq. (69) so that H(f) obeys
properties (i) through (iii) of the theorem can be used to find 0(t) by defining its Fourier
transform through Eq. (72). Thus, our choice of the h(k)'s is somewhat arbitrary.

The expansion given by Eq. (67) is simple, but not always convenient for practical
applications. For, if we wanted the approximation of g(t) in the subspace V and had the
expansion for the approximation in Vj 1, we would have to recompute all expansion coef-
ficients. Furthermore, this expansion does not lend itself to defining filtering operations.
An alternate expansion can be derived by noting (through the projection theorem) that
there exists a subspace Oj composed of functions that are orthogonal to those composing
V such that

Oj (D v - V,+ (73)

where ( denotes the Cartesian product. Thus, from property (b) of the multiresolution
expansion one can show that

U O = L2 (R) (74)
jEZ

In light of this new definition we have the following theorem whose proof can be found in
the Refs. 2 and 5.

Theorem 7: Let { Vjl}Ez define the multiresolution approximation of the space L2(R),
0(t) be the scaling function whose Fourier transform is 0(f), and H(f) be the Fourier
series describing the Fourier transform of 0(t) as in Theorem 6. Then there exists a
function O(t) such that {V/ b(2i(t - 2-'k))}j,kCz-z is a basis for L 2(R), and the Fourier
transform of 0(t) is given by

where
K(f) - e''2, H'(f f 1/2). (76)

From Eqs. (75) and (76) it is possible to show that 0(t) is equal to a linear sum of time
delayed scaling functions. The function 0(t) is called an orthogonal wavelet, and the
theorem given above says that any function g(t) in L2(R) can be written as

g(t) ,k .9, v2iJ (2j(t - 2 -k)), (77)
j,kcZx Z

where

g,,k = VJ g(t)O°(23 (t - 2 'k))dt = O.q(2',2-k). (78)

15
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Thus, we see that the wavelet expansion coefficients are equal to the value of the wavelet
transform at the points (S,-r) = (2j, 2-3k). Figure 1 shows this. Moreover, we see that
0(t) plays a role in the definition of O(t). From a computational standpoint, Theorem 7
says that we must find 0(t) (or its Fourier transform) first, and then compute O(t).

4 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 *

3-

S 2- 0 * 6 0 * 0 0

S -

00

0 II

0 1 2 3 4

Fig. 1 - Points in the (s. T) plane where the wavelet expansion
coefficients are equal to the wavelet transform. This figure shows
all points lying within and on the boundary of the region
s E I2-3, 221 and T = 10, 41.

Theorems 6 and 7 not only suggest how the scaling function and orthogonal wavelets
can be computed, but also suggest that we can, to some degree, control the shape of the
wavelet in the time domain according to how we choose the sequence {h(k)}kEz. One
desirable property is to have a wavelet with compact support in the time domain, i.e.,
it is time limited in that it is nonzero only over a given interval. Such a wavelet gives
a true sense of time locality. A set of orthogonal wavelets with compact support was
discovered by Daubechies [2]. They are parameterized by an integer n, are real valued,
and are deoted as 0,.(t) for n > 2. In fact,

U upp -,, C [(1 - n),n], (79)

and

L. ¢b(2'(t - 2-'t)0,,(2j(t - 2-k))dt = 0 for all 1 $ k or i . (80)

16
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The associated scaling function is denoted by 0,,(t). These wavelets are derived by choosing
the sequence {h(k)}kz so that is of finite length (a FIR filter in signal processing parlance).
The result is the set of sequences {h,,(k)}kEz that are nonzero for k = 0,1,..., (2n - 1);

thus, they are of length 2n. Details of the procedure for finding these sequences can
be found in Daubechies' original paper; however, we have tabulated the sequences for
n = 2,3, ... ,14 in the appendix.

Figure 2 shows the Daubechies orthogonal wavelets for n = 2,3,...,13 They were
generated by first calculating (approximating) the Fourier transform of the associated

scaling function via the equation

P

o,() = II H(2-Pf), (81)
p=O

where
2n-1

H,(f) = hn(k)e - 2 .kf. (82)
h=0

Once ®n(f) is found, we calculate the Fourier transform of the orthogonal wavelet as

= 2 2 (3

where
K,(f) = e-, 2,fH*(f + 1/2). (84)

Equations (81-84) follow directly from Eq. (69), (72), (75), and (76). In particular, the
truncated product in Eq. (81) gives good results for P = 20 for low values of n (n = 3),
to P = 25 for high values of n (n = 13). This was checked by calculating the normalized
cross correlation between two Daubechies wavelets of order n, where one was derived by
using P = N, and the other with P = N + 1. For P = 25 (or P = 20 for low values of n)
the correlation was negligibly different from 1.

6. PROPERTIES OF DAUBECHIES WAVELETS

We now state and prove five theorems about the Daubechies wavelets introduced

in the previous section. The first three theorems state that these wavelets are bounded,
continuous, and in most cases differentiable.

Theorem 8: 0,(t) is bounded for all n.

17
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,f,. 01
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0' -'01:

02 -02

03 . 03
8 6 2 0 2 4 6 4 8 - 2 0 2 6 8

TiME TIVE

03 03

02 02

0 10

01

0? 02

0 3 03 --__-_ _
8 6 4 2 2 4 3 8 -8 6 2 0 2 4 6 8

ME I T!ME.

Fig. 2a -- Daubechies orthogonal wavelets for n = 2- 7. These wavelets are

nonzero only in the interval [(I - n), n.
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03 03
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0' 01

0 0

-0 .01

0,2 -0.2

03 -03-8 6 4 -2 0 2 4 6 8 -8 -6 -4 -2 0 2 4 6
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00
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Fig. 2b - Daubechies orthogonal wavelets for n = 8... 13. These wavelets are
nonzero only in the interval 1(1 - n), n],
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Proof of Theorem 8: Daubechies showed that the Fourier transform of the wavelet
On(t) has the property

IOe(f) < C(1 + If1 )-+ogB/10° 2 < C < oo, (85)

for some constant C, and where B < 2" - '. It follows that

I0-(t) if O (f)e21ftdf

< f_=IO (f)ldf

< C (1 + If1 )n-logB/og2' (86)

and
log B logB-- _ -n1=r > 1. (87)
log 2 log 2

Therefore, there exists some f > 0 such that Eq. (86) can be rewritten to yield

On (t) C d00 df

2C 00 df
J0  (1 + f)l+c

2C m dz
J1 zl+4E

=-2Cz-c"0

2C
- < (88)

Thus, the scaling function #n(t) is bounded for all t. Since {hn(k)}kEz is a finite sequence,
it is possible to show through Eqs. (81) and (82) that On(t) is a finite sum of time delayed
scaling functions. Therefore, the wavelet On(t) is bounded for all t.

Theorem 9: On(t) is continuous for all n.

Proof of Theorem 9: Let C-(R) be the set of all functions such that

g(t) E C (R) 4 f IG(f)1(1 + If1) 1+a < 00. (89)

If a = k for k = 0,1,2,..., then Ck(R) is the space of k-times continuously differentiable
functions, where, in particular, C°(R) is the space of continuous functions. Daubechies
has already shown that iO(t) E C'(R) for some a > 0. Thus, we only need to establish
that this implies -O(t) E C°(R). To begin, note that for any f E [0, a],

20



NRL REPORT 9316

(1 + IfI)1't < (1 + If1) 1+", for all f. (90)

This implies that

IG(f)I(1 + IfI)1+" < IG(f)I(1 + IfI)1+', for all f, (91)

which, in turn, implies

IG(f)I(1 + If )l+Edf < IG(f)I(1 + If )1+adf < o0. (92)

Thus, by the definition of C"(R) as it follows from Eq. (89), we see that 4,,(t) c C"(R)
for all e E [0, a]. Therefore, 'O,(t) E C°(R), and so i,,(t) is continuous.

Theorem 10: On(t) is continuously differentiable for n > 4.

Proof of Theorem 10: Daubechies proved that a > 1 for n > 4. Furthermore, from
the proof of the previous theorem, we know that ',n(t) E Ce for all positive e less than a.
Thus, On,(t) E C'(R) for all n > 4. In other words, On(t) is continuously differentiable for
n >4.

Theorem 11: For n > 4, O,(t) has a finite spectral variance, i.e.,

IJm f2jl(f)ldf < 00. (93)

Proof of Theorem 11: For n '> 4, On(t) is continuously differentiable, therefore,
0':(t) is continuous. Also, since lkn(t) has compact support (an interval), so does 0'(t).
Furthermore, since a continuous function over a compact interval is bounded, we see that
0'(t) is bounded over supp ', thus

L I0'(t) 12dt = 1 j¢'(t)12dt

00 uppp0.< meas(SUPP'On), max Jonl(t)12

< meas([( -n),n]), max I'(t)12
tE[(1-n),n

(2n- 1)- max 1,'(t) 2 < Oc, (94)
tE[(1-n),n]

where meas(.) is the Lebesgue measure, and have used Eq. (79). Since the Fourier trans-
form of 7p'(t) is )2rf1' n(f), we have by Parseval's Theorem,00 00

47r2 f 2 l(f)[ 2df J k/4'(t)12dt < o0. (95)
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Theorem 12: For n > 4, or for any wavelet with a finite spectral variance, if g(t) £
L 2(R), then 7-) 2

-*, as s -- 0. (96)

Proof of Theorem 12: By the definition of the wavel transform we havr

0g(s,") -r) = - f g(t)O:(s(t - r))dt

_=3/2Jg(tW<(s(t - r))dt. (97)

Therefore, taking the square magnitude of Eq. (97), applying the Schwartz inequality, and
using Eq. (95) from Theorem 11, we have

2 
2

0 < (S] g(t)O*'(s(t - r))dt

tOO P00

s j lg(t)12dtf I;b,'(Z))2 dz

=(27rs)lgg 2f 0 I'(f )l'~ (98)

Thus, by applying the squeeze theorem for limits, Eq. (96) follows from Eq. (98). This
proves the theorem.

Basically, this theorem says that as s approaches zero, the derivative of the wavelet
transform along the r axis approaches zero. In other words, q(s, r) becomes 'smoother'
along - as s -+ 0.

Theorem 13: 4,,(t) C L'(R)flL 2(R) for al1 n.

Proof of Theorem 13: By Theorem 8 we know that 0,(t) is bounded, i.e., I4,,(t)i < K
for some K < oc. Therefore, using Eq. (79) we have

J b,,(t)jdt < meas (supp k,) K < (2n - 1). K < 0c, (99)

which implies that 0,(t) C L1 (R). Also,

J, j,0,(t)j'dt < meas (supp ) g 2 < (2n - 1) K 2 < 0, (100)

which implies that O,,(t) E L2(R). This proves the theorem.
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This last theorem shows that the Daubechies orthogonal wavelets obey the regularity
property as defined in Eq. (9). This says that the wavelet transform that uses a Daubechies
orthogonal wavelet as the transform kernel is meaningful in the sense that its inverse exists.

Theorem 14: For all Daubechies wavelets, the following are true:

(i) lim I=(f)I2 -0,s- 0 IfI
f--.0f

(ii) frn llp.(f)12 0,

(ii .IfI df<oc.

Proof of Theorem 14: Daubechies and Mallat have shown that

T,.(f) -- e -_27r H.(f + 1/2) ft H,(f/2k), (101)
k=1

where

H,()- [(1 + e-3217-f)/21nQo(f), (102)

and

I1Q7(f) 2 = - 1 + k sin 2k(7rf)" (103)
k=o k

From Eqs. (102) and (103) one finds

tim 1H,,(f)j 2  1, (104)
f-0

which implies
2

tim H H(f/2) 1. (105)

Now consider the limit

tim 1H,(f + 1/2)12 (1- e- 7,) 2n rQn(f + 1/2)12= Z'M li ra (106)
-0 If-o 2 -I( I06

Using Eq. (103), and L'H6pital's rule, we see that

lim Q 1(f + 1/2) 12 11m Df Qn(f + 1/2)12
f-0. Ifl f -0+o Dtf

27r-i7 nk 1 sin2+k(7rf + 7r/2) cos(rf + r/2)

=0. (107)
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Similarly,
IQ,(f + 1/2) 12

=~ O. (108)f-.o- Ifl

Combining Eqs. (101-108) yields

i LI (f)12 _ tim H (f + 1/2)12 r t H ,,( f / k)2
liraimlmi/J- 0o Il f- 0o If i -°ik= 1

im(1 - e - 2) 2n ,im IQn(f + 1/2)12 ,im H Hn(f/2k) 2

-.o 2l f- 0P JOk~l

S0.0.1 =0, (109)

which proves (i). (ii) follows from (i) for, if IlI,(f)l2 --, K $ 0 as f --+ 0, then the limit in

Eq. (109) would be infinite.

(iii) is proved in two parts, since we can write the integral in (iii) as

,(f) 12 df=J f 11 f =df 11 + 12. (110)

Ifi1 If1! Ifi
Consider I,. We first note that because IHn(f)l2 < 1, and using Eq. (101), that

0_ 2

JII"(f)l 2 = le-j 2Tfl2lHn(f + 1/2)12 1 H.(f/2k) IH.(f + 1/2) .12 (111)

Also, from Eqs. (102) and (103) we have

1 + e-' 2nl,(fl

IHn(f)l2  + 2 IQn(f)12
2

< + e_27s 2n max jQ,,(f)12

2 fE[-1/2,1/2]

= Cos2n(rf) max IQ,(f) 2. (112)
fC:E[-1/2,1/1]

Therefore, since sin(x) __ Ixj, from Eq. (112) it follows that

IHn(f + 1/2)12 < max JQn(f) 12 cos2n(7rf + 7r/2)

Ill I E -1/2,1/2] IP

= [ max IQn(f) 12 8in 2 "(rf)f E - 1/2 / 2] 1 lP

< max IQ.(f)2] (f)
2n

1EV 1/2,1/21 .f

f E-1/2,1/2max IQ.(f)12]W2nif
'12n- 1. (113)
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Integrating both sides of Eq. (113) yields

SLf ) df - max IQ.( f)12 7r2- If2 - dfS IfI d f E- 1/2,111 1 1

[max IO(f)12 7r 2 0 1(14

which proves that I < oo. Note that for Ifi > 1,

< I (f) 12.  (115)
IfI

Since 4,,(t) E L 2(R), by Parseval's Theorem we know that ',,(f) E L 2(R), so it follows
that

12 j 4(f)I df < 1I(f)12df < 00. (116)
1 i If! 0

Combining Eqs. (114) and (116) yields

J I'l df = 1l + 12 < 00, (117)

which proves (iii).

7. APPLICATION: WAVELET PASSBAND FILTERING

Frequently one must filter a passband signal to reduce transients or reject out of
band signals. Generally, this is accomplished by passing the signal through an analog
filter designed to pass only those frequency (Fourier) components that occupy the signal
passband. This is equivalent to convolving the input signal with the impulse response of
the filter. In this section, we show how filtering can also be accomplished by using the
wavelet expansion.

It was shown in Section 5 that if g(t) E L 2(R) has the wavelet expansion

g(t) '," Y gV 2-/jY4(2j(t - 2-jk)), (118)
i,kEZxZ

where

egj,k '/ g(t)7P(2 3 (t - 2-jk))dt. (119)

We realize, however, that the components of the expansion associated with large values
of 2i roughly correspond to short term features (transients) of the signal g(t), and the
components associated with small values of 2i contribute to the long term (average or dc)
components of g(t). Thus, to do passband filtering in the wavelet domain, we can construct
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a signal with a wavelet expansion that uses only those coefficients that correspond to a
narrow range of dilations. In mathematical terms, we construct the signal

it,

gbp(t) = E E gk - (2j(t- 2-jk)). (120)
j=ji keZ

Thus, we are constructing a signal with the coefficients associated with the wavelets whose
dilations are 2j,..., 2j h.

We demonstrate this filtering method by the example that follows. Figure 3 shows
a real valued signal composed of two windowed sine waves and a spike (transient). The
uncontaminated signal is mathematically expressed as

g(t) = 1 exp ((t- -)2/02)[sin(2rft) + sin(27rf 2t)], (121)
21

where I = 8.533, o-1 = 3.413, fx = 1.5 Hz, and f2 = 2f, = 3.0 Hz. Whereas the spike is
given by

n(t) = 3 exp ((t - tr), (122)

where 0-2 = 0.071. Figure 4 shows the Fourier spectrum of g(t) + n(t), and Fig. 5 shows
its wavelet transform. The vertical ridge in Fig. 5 is due to the transient. Clearly, the
wavelet transform show the locality of the transient in time, which the Fourier spectrum
does not. We first analog filter the signal in Fig. 3 by passing it through a Chebyshev
passband filter whose Fourier spectrum is given by

1
C S S 4 + 1.80377S 3 + 2.62680S2 + 2.02550S + 0.82851' (123)

where

S = 3 2?r f 2 (124)

and fo = V/- f is the geometric mean of the filter passband whose width is
B = fh - f, where f, < fh. In this case, f, = 1.15 Hz, and fh = 3.35 Hz. The Fourier
spectrum of the filter, shown in Fig. 6, displays some ripple in the passband. This is an
inherent characteristic of the Chebyshev filter type [9]. For this particular filter, the ripple
width (peak-to-peak difference) is 0.1 dB. Figure 7 shows the Chebyshev filter output in
time in response to the signal in Fig. 3, and Fig. 8 shows its Fourier spectrum. In Fig. 7,
we note two features. First, we see that as compared to the original function, the two
sine waves are displaced in time. This is due to the phase characteristic of the filter:
each sinewave experiences a different phase shift. Second, we see that the entire signal is
displaced in time slightly, thus accounting for a group delay that is also due to the phase
characteristic of the filter.
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Figures 9 and 10 show the result of applying the wavelet filtering method to the

signal. Figure 9 shows the result for a reconstruction using dilations 21, 22, and 2'. Figure

10 shows a reconstruction using slightly less wavelet bandwidth. In this case, we have

used dilations 21 and 22. As compared to passing the signal through a Chebyshev filter,
we see qualitatively that wavelet filter produced more amplitude distortion in the time

domain but does not show the same effect of phase distortion or group delay. Both analog
filtering (using the Chebyshev filter) and wavelet filtering de-emphasize the spike but do

not completely remove it.

Figures 11 and 12 show the Fourier spectrum of the signals derived through wavelet
filtering. They show that the low frequency components of the spectrum have been re-

moved, and this is reasonable since a large part of the spectral energy of the spike is
located there. Furthermore, we see that in Fig. 12 a spurious peak occurs, which implies

that wavelet filtering causes nonlinear distortion in the Fourier frequency domain. Figures

13 to 15 show the wavelet transforms of the signals resulting from wavelet filtering, and
by analog filtering. (Remember that the wavelet expansion coefficients of these functions
are equal to their wavelet transforms at the points (s, r) = (2 , 2-'k) for i, k E Z x Z.)

As compared to the wavelet transform of the input signals shown in Fig. 5, these figures

show a reduction of the ridge in the (s,'r) plane associated with the spike.
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Fig. 9 - Wavelet reconstruction of the input signal using Fig. 10 - Wavelet reconstruction of the input signal by
dilations 2' 22. and 23. The wavelet expansion used the using dilations 21 and 22. The wavelet expansion used

Daubechies orthogonal wavelet of order n 8. the Daubechies orthogonal wavelet of order n = 8.

20 20

18 18

16 1.6

14 1.4

12 1.2

10 10

08 08

06 0.6

04 04

02 02

0 0
0 10 20 30 40 50 60 70 80 90 100 0 10 20 3.0 4.0 50 60 70 80 90 100

FREQUENCY f FREQUENCY f

Fig. I - Fourier spectrum (square magnitude) of the Fig. 12 - Fourier spectrum (square magnitude) of the

wavelet reconstruction of the input signal using dilations wavelet reconstruction of the input signal using dilations

2'. 22, and 2'. The wavelet expansion used the 2' and 22. The wavelet expansion used the Daubechies

Daubechies orthogonal wavelet of order n = 8. orthogonal wavelet of order n = 8.
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Fig. 13 - Wavelet transform (square magnitude) of the wavelet
reconstruction of the input signal using dilations 2', 22, and 2 . The
transform kernel is a Daubechies orthogonal wavelet of order n 8.
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Fig. 14 - Wavelet transform (square magnitude) of the wavelet
reconstruction of the input signal using dilations 2' and 22. The
transform kernel is a Daubechies orthogonal wavelet of order n = 8.
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Fig. 15 - Square magnitude of the wavelet traiisform of the input
signal after analog filtering with a Chebyshev passband filter. The
transform kernel is a Daubechies orthogonal wavelet of order n = 8.

8. APPLICATION: A DECONVOLUTION ALGORITHM

The deconvolution of two signals has important applications in geophysics and com-

munication systems. The problem can be simply stated as follows: given a known input

signal x(t) driving a linear system whose unknown impulse response is g(t), estimate g(t)

given the known (measured) output signal y(t) = a(t) * g(t).

The easiest way to deconvolve is to simply calculate the Fourier transforms X(f)

and Y(f), and find their quotient G(f) = Y(f)/X(f). This is reasonable in principle but

in practice can produce numerically unstable results, since one may have to divide Y(f) by

a very small X(f) if our discrete numerical approximation of X(f) brings us close to one

of its zeros. This problem may become worse in the presence of noise in the measurement

of X(f). The following outlines a deconvolution procedure in the context of the wavelet

expansion.

Both the impulse response g(t) and the output y(t) have wavelet expansions given

by
g(t) *'' gj,. !(2'(t - n2-i)

i,nEZxZ

y(t) a. E yj,,iP(2j(t . m2 j)), (125)
j,mEZxZ
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where as compared to the definition in Eq. (77) we have dropped the factors vr and /2]
inside the summations for notational convenience, i.e., gi,n v/- g/,,, and
yj,m - - yj,,. The coefficients gi,n are unknown; they are the ones we wish to es-
timate. On the other hand, the coefficients yj,,m are known and are calculated by the
direct application of Eq. (78) on the known (measured) output y(t). We also know that

y(t) = (t) * g(t)
= X(t) * 1: gi,.¢0(2'(t - n2-'))

I,nEZXZ

- gi,, x(t) * ¢(2'(t - n2-')). (126)
i,nEZXZ

Each term inside the last summation in Eq. (126) has its own wavelet expansion given by

x(t) * 4(2'(t - n2-')) = d3!,j,(2'(t - m2-j)). (127)
j,mEZxZ

By substituting Eq. (127) into Eq. (126), and with rearrangement of the summations we
find that

z(t) * g(t)= - d-- gtj4,(23(t-m2-)). (128)
j,MEZxZ i,nEZXZ

Comparing Eq. (128) with the second line of Eq. (125) shows that

i,nEZXZ

00 gi, - I

. 0 , 1  gio (129)
i= - 00 9 0,

This suggests the following expression:

Y =V G, (130)

where V is a tensor, and Y and G are matrices. Assuming a suitably defined inverse of V
exists, the wavelet coefficients for the expansion of g(t) can be found from the expression

G =V 1 Y. (131)

A time series for the impulse response g(t) can be found immediately by using coefficients
gi,,, in Eq. (77).

At this point, some comments are in order. First, the matrices and tensors in
Eq. (130) contain an infinite number of elements. However, in practice one should find
that elements will approach zero as the magnitude of their indices i, j, m and n become
large. This follows from Theorem 2, which says the wavelet transform decays as the
magnitude of a and -r become large. Since the coefficients of the wavelet expansion are
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equal to the wavelet transform at each point where (s, r) = (2j,2-3k), we know that
the coefficients will decay to zero as the magnitude of j and k become large. Thus, for
practical purposes, we need only use matrices and tensors with finite numbers of significant
coefficients.

Given that we will truncate the tensors and matrices defined above, the problem can
be recast as a standard linear programming problem using matrices and vectors. First,
from Theorem 2 we know that the coefficients for the wavelet expansion of the input z(t)
will only be significant for limited ranges of i and n, i.e., i = il,..., 1 h, and ii = nt,. .. , nh.

From Eq. (127) and the orthogonality of the wavelets in the expansion, we know that we
need only consider those elements of D associated with these values of i and n. Similarly,
the coefficients for the measured output will only be significant for a range of j and m,
i.e., j = it ,)h, and m = m,... ,mh. (More generally, (ni,nh) and (ml,mh) could
depend on i and j respectively. This was done in the numerical example that follows.)
From Eq. (125), it is implied that we need only consider those elements of D that are
related to the coefficients for the output associated with these values of j and m. With
these facts in mind and by using Eq. (130), this implies that the problem of finding the
wavelet expansion of the system impulse response (finding the coefficients gi,,) can be well
approximated by the vector equation

y = Dg, (132)

where

- • . fltrh . jmh dlnh

D-n . . .. .

3h,Mh • ih,mh ...... Jh,mh

T =  ( j,,,, p... .. y r ,n ... n

... ) (133 )

We see that V9 is a matrix of size (jh - jt + 1)(mh, - mj + 1) x (ih - it + 1)(flh - 7tj + 1), and
the vectors y and g are of length (jh - jt + 1)(mh - m1 + 1) and (ih - ii + 1 )(nh - n1 + 1)
respectively.

If N = (j, - iL + 1)(mnh - m + 1) = (i, - i + 1)(nh - n + 1), then D is a square
matrix, and the vectors are now eements of the Euclidean space RN. We also see that

the solution g does not change if we multiply both sides by the Hermitian of D, since

b - DHy = DHDg - Qg. (134)
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We now seek the solution to the equation

b = Qg, (135)

where Q = DHD is now a positive definite matrix. It is now possible to show that finding
the solution to Eq. (135) is equivalent to finding the solution of the quadratic problem

min [lgHQg - bHg]. (136)

Finding g is now recast as a minimization problem, thus allowing the use of any method
designed to solve this class of problem.

We could find g by multiplying b by the inverse of Q, providing Q is nonsingular. If
it is, then Q-1 is unique, and we have a unique solution for g. However, rather than finding
Q- 1 directly, we really need only to find g directly. Such a method is a numerical procedure
called the conjugate gradient algorithm [10]. It possess the same numerical stability as the
steepest decent algorithm but converges in a finite number of steps at the cost of some
additional computation. This method produces a finite sequence of vectors go,gl,.., gN,

where gN is the solution we seek. The complete algorithm is given as follows. Let go be
any vector in RN, and define do = -eo b - Qgo, then for k -0, ... , (N - 1),

gk+l - gk + akdk,
erdk

~k -- dHQdk'

dk+l = -ek+l +01dk,

3k - ek+lQdk
dH'Qdk'

ek Qgk - b. (137)

In practice, we generally cannot measure y(t) exactly but are given yn(t) = y(t)+n(t)
where n(t) is a noise process. This, in turn, means that we do not know y but are given

y, = y + n, where n is the vector describing the deviation from the true value of y
because of n(t). Therefore, application of the conjugate gradient algorithm gives us g in
a best least square error sense. As we will see, the presence of noise in y.r will cause
distortion and noise to appear in the solution for g and in the resulting reconstructed

time series derived from the wavelet expansion.
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Figures 16 through 18 show the input x(t), the noiseless output y(t), and impulse

response g(t), the function we seek to estimate. Figures 19 through 21 show their re-

spective wavelet transforms that were generated by using the Daubechies wavelet of order
n = 5. Furthermore, all wavelet coefficients utilized in the deconvolution algorithm were

also based on wavelet expansions using the Daubechies wavelet of order n = 5. Since the
vector expression in Eq. (132) is an approximation to the matrix expression in Eq. (130),

it is appropriate that the matrix D and vector y (or yin) are composed of the significant

elements (those of largest magnitude) of the tensor D and matrix Y respectively. This is

done by choosing carefully the ranges of i, j, n, and m.

'0 10

05 05

0 0

05 -05

1 0 1 0
50 100 150 200 250 300 -40 10 6.0 110 16C 2'0 260

TIME I TIMEI

Fig. 16 - Input signal Fig. 17 - Noiseless output signal

10

05

0

05

10
0 50 100 150 200 250 300

TIME I

Fig. 18 - True impulse response. This is the function
we seek via a deconvolution algorithm.
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Fig. 19 - Square magnitude of the wavelet transform of the input
signal The transform kernel is a Daubechies orthogonal wavelet of
order n 5
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Fig. 20 - Square magnitude of the wavelet transform of the noiseless
output signal The transform kernel is a Daubechies orthogonal wavelet
of ordern = 5
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Fig. 21 -- Square magnitude of the wavelet transform of the true
impulse response. The transform kernel is a Daubechies orthogonal

wavelet of order n = 5.

To choose the ranges of i and n, we consider the vector Ym (or y,) whose elements are
the wavelet expansion coefficients of the (measured) output. These coefficients, in turn, are
equal to the values of the wavelet transform of the (measured) output at (s, r) = ( 2 j, 2-im),
for j, m G Z x Z. Therefore, we choose ji, 3h, m, and mh so that y is composed of
all coefficients within and on the boundary of the region s C [22,21] and T £ [12,26],
including the coefficient Y-2,2, which is equal to the wavelet transform at (s,r) = (22, 8).

As can be seen from Fig. 20, this region defines the portion of the (s, r) plane where the
wavelet transform of the output is significant.

We are now left with the task of choosing the ranges of i and n, and this is done by
examining the elements &n, of the matrix D. If we consider Eq. (127), we can assume
that the wavelet expansion coefficients of any x * 0(.) should at most be significant over
the ranges of i and n for which the wavelet expansion coefficients of the input x(t) are
significant. These coefficients, in turn, are equal to the values of the wavelet transform
of the input at (s,7) = (2,2-n), for i,n E Z x Z. Therefore, we choose il, ih, nt, and

nh such that D is composed of all coefficients within and on the boundary of the region
S C [2--',21 and r E [2,16], including the coefficient d1 2,0 that is equal to the wavelet
transform at (s,r) = (22, 0). As can be seen from Fig. 19, this region defines the portion
of the (s, 7) plane where the wavelet transform of the input is significant.

The choice of the ranges of i, j, n, and m for the example presented here resulted in

a matrix D of size 57x57. Consequently, the conjugate gradient algorithm converged in

57 iterations. The choice of go (the initial guess of g) is arbitrary; hence, it was set equal

to a vector of zeros.
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Figures 22 to 29 show the outputs with various signal-to-noise ratios and the resulting
estimated impulse responses. In all cases the estimated impulse response was derived
from a wavelet reconstruction using dilations 2-2, 2- 1, 20, and 21. Clearly, as the signal-
to-noise ratio of the measured output decreases the estimated impulse response becomes
progressively more noisy and distorted. This also shows that high signal-to-noise ratios
are required for accurate estimation of the impulse response. Such behavior is common to
all deconvolution algorithms; it demonstrates a typical trade-off. Generally, convolution
smears the impulse response to produce the output signal. Deconvolution buys back the
resolution or features of the impulse response but at the expense of producing an estimate
exhibiting a signal-to-noise ratio that is lower than the measured output [11].

'5 15 --

10

05 05

0 0

05 -0.5

• 0.1 0

1 5 1 5

2.0 *200 50 100 15.0 20.0 25.0 30.0 0 5.0 10.0 150 20,0 250 300
TIME t TIME i

Fig. 22 - Noisy output signal with a peak-signal- Fig. 23 - Estimated impulse response based on the input
to-average-noise ratio of 40 dB signal shown in Fig. 22 possessing a peak-signal-to-

average-noise ratio of 40 dB. The wavelet expansion for
the reconstruction of the impulse response used a
Daubechies orthogonal wavelet of order n = 5. and
dilations 2-2. 2-, 20. and 2'.

"5 , 15f

'0 10

05 05

. - - - . . . - 0
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I0 -10

15 -15

2 C.20 [

40 1 0 60 11 0 160 21 0 260 0 5.0 100 150 200 25.0 30.0
TIME, TIME t

Fig. 24 - Noisy output signal with a peak-signal- Fig. 25 - Estimated impulse response based on the input
to-average-noise ratio of 35 dB signal shown in Fig. 24 that possesses a peak-signal-to-

average-noise ratio of 35 dB. The wavelet expansion for
the reconstruction of the impulse response used a
Daubechies orthogonal wavelet of order n = 5. and
dilations 2 . 2 1, 2". and 2'.
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Fig. 26 - Noisy output signal with a peak-signal- Fig. 27 - Estimated impulse response based on the input
to-average-noise ratio of 30 dB signal shown in Fig. 26 that possesses a peak-signal-to-

average-noise ratio of 30 dB. The wavelet expansion for
the reconstruction of the impulse response used a
Daubechies orthogonal wavelet of order n = 5, and
dilations 2- 2-', 20, and 2'.
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Fig. 28 - Noisy output signal with a peak-signal- Fig. 29 - Estimated impulse response based on the input
to-average-noise ratio of 20 dB signal shown in Fig. 28 possessing a peal-signal-to-

average-noise ratio of 20 dB. The wavelet expansion for
the reconstruction of the impulse response used a
Daubechies orthogonal wavelet of order n = 5, and
dilations 2-2 , 2-', 20, and 2'.

9. SUMMARY

This report addressed several theoretical and practical aspects of the wavelet trans-
form and wavelet expansion in the context of signal theory and signal processing.

On the most general level, several theorems were proved. In particular, a 'decay
rate theorem' was proved (Theorem 2) which described how rapidly the wavelet transform

decays as the dilation variable s increases. Moreover, the theorem showed the decay rate
depends upon the continuity of the transformed signal. Such a theorem is analogous to
the various decay rate theorems found in Fourier analysis that describe how rapidly a
Fourier spectrum decays as the magnitude of the frequency variable increases.
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We also presented the reformulation and extension of some existing results. The
material in Section 4 showed that linear system theory, i.e., input/output relationships
for linear systems could be reformulated in the context of the wavelet transform. It was
also shown that stochastic signal theory could be applied to the wavelet transform; the
power spectral density and autocorrelation function could be used to describe the expected
value of wavelet transform of a stochastic signal. Some of the material in Sections 6 and
7 extended some earlier work. Here, the continuity, boundedness, and regularity of the
Daubechies orthonormal wavelets were guaranteed. Such results were only sketched out
in the original presentation of her work [2].

Two practical applications of the wavelet expansion were presented. The first ap-
plication was a filtering method, which may be most useful when the coefficients of the
wavelet expansion are already available. Here, we showed that one could passband filter
in the wavelet domain. Because of the sense of locality offered by the wavelet expansion
(and wavelet transform), this filtering method may be applicable when we require short
term, localized filtering of a signal. The second application of the wavelet expansion was
the development of a deconvolution or iterative restoration algorithm. The method cast
the problem as a quadratic least squares problem, thus admitting to a solution by a host of
well known and established algorithms. In this case we chose the conjugate gradient algo-
rithm, because it converges in a finite number of iterations. This also allowed us to avoid
the problem of division by zero that crops up in the simple spectral division approach
to deconvolution. The disadvantage of using the wavelet expansion approach to decon-
volution is the need to precalculate the expansion coefficients, and, to date, no known
analog to the fast Fourier transform (FFT) exists for the wavelet expansion. Thus, we
have encountered a classic trade off: the development of a robust deconvolution algorithm
at the expense of additional numerical computation.
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Appendix A

FOURIER SERIES COEFFICIENTS FOR DAUBECHIES WAVELETS

Note that the coefficients listed below define the Fourier series

2n-I

Hn(f) = 2- 1/2 E an(k)e32 wkf (Al)
k=o

which is consistent with Daubechies definition of the series Hn(f) [2]. To be consistent
with the form of Hn(f) used in Eq. (82), one must take hn(k) = an(k)/v,2.

a2(0) = 0.482962913145

a2(1) = 0.836516303738

a2(2) = 0.224143868042

a 2(3) = -.129409522551

a 3 (0) = 0.332670552950 a3 (3) = -.135011020010

a3(1) = 0.806891509311 a3 (4) = -.085441273882

a3(2) = 0.459877502118 a3(5) = 0.035226291882

a4(0) = 0.230377813309 a4(4) = -.187034811719

a4(1) = 0.714846570553 a4(5) = 0.030841381836

a4(2) = 0.630880767930 a4(6) = 0.032883011667

a4(3) = -.027983769417 a4(7) = -.010597401785

a5(O) = 0.160102397974 a5(5) = -.032244869585

as(1) = 0.603829269797 as(6) = 0.077571493840

a5(2) = 0.724308528438 a5(7) = -.006241490213

a5(3) = 0.138428145901 as(8) = -.012580751999

a5(4) = -.242294887066 a5(9) = 0.003335725285
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a6(0) = 0.111540743350 a6(6) = 0.097501605587

a6(1) = 0.494623890398 as(7) = 0.027522865530

a6(2) = 0.751133908021 a6(8) = -.031582039318

a6(3) = 0.315250351709 a6(9) = 0.000553842201

a6(4) = -.226264693965 a6(10) = 0.004777257511

a6(5) = -.129766867567 a6(11) = -.001077301085

a7 (0) = 0.077852054085 a7(7) = 0.080612609151

a7 (1) = 0.396539319482 a7(8) = -.038029936935

a7(2) = 0.729132090846 a7(9) = -.016574541631

a7(3) = 0.469782287405 aT(10) = 0.012550998556

a7(4) = -.143906003929 a7(11) = 0.000429577973

a7(5) = -.224036184994 a7(12) = -.001801640704

aT(6) = 0.071309219267 ar(13) = 0.000353713800

as(0) = 0.054415842243 aa(8) = -.017369301002

as(1) = 0.312871590914 ag(9) = -.044088253931

a8(2) = 0.675630736297 as(10) = 0.013981027917

as(3) = 0.585354683654 ag(ll) = 0.008746094047

as(4) = -.015829105256 as(12) = -.004870352993

ag(5) = -.284015542962 ag(13) =- .000391740373

as(6) = 0.000472484574 a8(14) = 0.000675449406

a8(7) = 0.128747426620 as(15) = -.000117476784
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a9 (0) = 0.038077947364 ag(9) = -.067632829061

ag(l) = 0.243834674613 ag(10) = 0.000250947115

ag(2) = 0.604823123690 17(11) = 0.022361662124

a9(3) = 0.657288078051 ag(12) = -.004723204708

a9(4) = 0.133197385825 a9(13) = -.004281503682

ag(5) = -.293273783279 a9(14) = 0.001847646883

ag(6) = -.096840783223 a9(15) = 0.000230385764

ag(7) = 0.148540749338 ag(16) = -.000251963189

ag(8) = 0.030725681479 aq(17) = 0.000039347320

alo(O) = 0.026670057901 ajo(10) = -. 029457536822

alo(1) = 0.188176800078 alo(ll) = 0.033212674059

alo(2) = 0.527201188932 alo(12) = 0.003606553567

alo(3) = 0.688459039454 alo(13) = -.010733175483

aio(4) = 0.281172343661 alo(14) = 0.001395351747

alo(5) = -.249846424327 alo(15) = 0.001992405295

alo(6) = -. 195946274377 alo(16) = -. 000685856695

alo(7) = 0.127369340336 alo(17) = -. 000116466855

alo(8) = 0.093057364604 alo(18) = 0.000093588670

alo(9) = -. 071394147166 alo(19) = -. 000013264203

al(O) = 0.018692339500 a11(11) = 0.031336714900

a1l(1) = 0.144048360129 a1l(12) = 0.020839548328

ali(2) = 0.449822419238 au(13) = -. 015365977170

ali(3) = 0.685506451221 ali(14) = -. 003339972936

a1 1(4) = 0.411710892303 all(15) = 0.004928945867

a11(5) - .162485521339 aii(16) = -. 000308709907r a11(6) = -. 274320974144 a11(17) = -. 000893056839

all(7) = 0.066025638763 all(18) = 0.000249184997

a11(8) = 0.149791844607 a11(19) = 0.000054438816

a1 (9) = -. 046504355457 all(20) = -. 000034637754

all(10) = -. 066445800596 al(21) = 0.000004494745
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a 1 2(0) = 0.013114280902 al 2(12) = 0.041627451082

al 2(1) = 0.109587064387 al 2(13) = -. 012180151045

a12(2) = 0.377449392844 al2(14) = -.012829445168

a1 2(3) = 0.657445006413 a12(15) = 0.006713258423

a12(4) = 0.516294170295 a12(16) = 0.002249393038

a 12(5) = -.044313624533 a!2(17) = -. 002179176553

a 12(6) = -. 315809615475 al 2(18) = 0.000006459278

a12(7) = -. 023471399498 al 2 (19) = 0.000388621871

a 1 2 (8) = 0.182806918672 a12(20) = -. 000088486615

a12(9) = 0.005686977952 al2(21) = -. 000024241195

a12(10) = -. 096186633657 a12(22) = 0.000012775434

al 2 (11) = 0.010995853244 al2(23) = -. 000001528836

a 13 (0) = 0.009204916897 a13(13) = 0.002363616024

a13 (1) = 0.082889405900 a13(14) = -.023833745174

a13(2) = 0.312115898739 a 1 3 (15) = 0.003917927648

a 13(3) = 0.611313131287 a13(16) = 0.007254616037

al3(4) = 0.589096065406 al3(17) = -. 002760408506

a13(5) = 0.086639694877 a13(18) = -. 001315670455

a13(6) = -. 316237370186 a13 (19) = 0.000932006061

a13(7) = -. 126430468961 a13(20) = 0.000049301053

a 1 3 (8) = 0.177816118862 al 3(21) = -. 000165090932

a 13(9) = 0.071915527849 a13(22) = 0.000030664729

a13 (10) = -. 106342427892 a13(23) = 0.000010440501

al 3 (11) =- .026758244166 a13(24) = -. 000004699171

a13(12) = 0.056034390582 al 3(25) = 0.000000521846
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a 14 (0) = 0.006547491642 a14(14) = -. 029754599557

f a14(1) = 0.063360170581 a14(15) = -. 005754062318

a14(2) = 0.259953209778 al4(16) = 0.012711190182

a14(3) = 0.569486757657 al 4(17 ) = -. 000664409841

a14(4) = 0.659765991407 al 4(18) = -. 003831834380

a 14(5) = 0.253248224211 al 4(19) = 0.001038385046

a14(6) = -. 245883485949 al 4(20) = 0.000708200880

a14(7) = -. 207221475070 a14(21) = -. 000381870689

a14(8) = 0.141972692112 al 4(22) = -. 000042656957

a14(9) = 0.144030955893 al 4(23) = 0.000068164760

a14(10) = -. 083519992219 a14(24) = -. 000010124883

a14(11) = -. 071278880702 al 4(25) = -. 000004370468

al 4(12) = 0.054864716315 a14(26) = 0.000001706613

al 4(13) = 0.027555092282 a14(27 ) = -. 000000176357
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